Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland

نویسندگان

  • Zdzisław M. Migaszewski
  • Agnieszka Gałuszka
  • Sabina Dołęgowska
چکیده

A detailed hydrogeochemical study was performed in the Wiśniówka mining area (south-central Poland). This covered three acid pit bodies, historic tailings acid ponds, acid pools, and additionally two neighboring rivers. All these acid mine drainage (AMD) waters are characterized by the pH in the range of 1.7 (pools) to 3.5 (tailings ponds). The most interesting is the Podwiśniówka acid pit lake that shows a very low pH (2.2-2.5) and very high concentrations of SO42- (2720-5460 mg/L), Fe (545-1140 mg/L), Al (86.2 mg/L), As (9603-24,883 μg/L), Co (1317-3458 μg/L), Cr (753-2047 μg/L), Cu (6307-18,879 μg/L), Ni (1168-3127 μg/L), and rare earth element (REE) (589-1341 μg/L). In addition, seeps that drain the Podwiśniówka mine tailings and partly aggregate piles form strong acid pools in the mining area. Along with these pools, in which As and REE contents reach 369,726 and 6288 μg/L, respectively, these waters are among the most distinctive As- and REE-rich AMD surface waters across the world. It is noteworthy that the Podwiśniówka acid pit lake and Wiśniówka Duża acid pit sump exhibit different element signatures and REE concentration patterns normalized to North American Composite Shale (NASC): the Podwiśniówka acid pit lake always shows a characteristic roof-shaped medium REE (MREE) profile with distinct enrichments in Gd, Eu, and Tb whereas the other one displays a step-shaped heavy REE (HREE) profile with positive Tb and Gd anomalies. The REE undergo fractionation during weathering and the subsequent leaching of dissolved and suspended fractions from rocks to acid water bodies where these and other elements are further fractionated by geochemical processes. This study shows that the individual REE have greater affinities for Mn, HREE for Fe and SO42-, and only La and Ce for Al. This specific water geochemistry has enabled us to (i) pinpoint the location of AMD "hot spots" originated from quartzite mining and processing operations conducted by current and previous mining companies, (ii) predict the directions and effects of future strip mining for quartzites in the Wiśniówka Duża and Podwiśniówka open pits, and (iii) evaluate the potential impact of mining and processing effluents on the quality of rivers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of rare earth elements by coupling multivariate analysis, factor analysis, and geostatistical simulation; case-study of Gazestan deposit, central Iran

The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and ...

متن کامل

Detection of Main Rock Type for Rare Earth Elements (REEs) Mineralization Using Staged Factor and Fractal Analysis in Gazestan Iron-Apatite Deposit, Central Iran

Gazestan magnetite-apatite deposit is located in Central Iran and Bafq region, which has been occurred in form of veins, veinlets, and small apatite lenses as well as magnetite in metasomatic rock types such as green chlorite-actinolite rock units. These rocks are situated in the carbonate-volcanic complex of Upper Precambrian-Lower Cambrian Rizo formation. In this study, staged factor analysis...

متن کامل

Investigation of blind massive sulphide deposit signatures in the calcrete layers as a geochemical barrier: A case study of Areachap, Kantienpan and Copperton deposits

The trace element contents on the surface originated from mineralization would depend to the thickness of the calcrete layer above the ore deposit on the surface. A very thick layer of calcrete may not allow for much dispersion of the elements of interest in the surface. These elements may be concentrated in non-magnetic and magnetic part of calcrete. Based on the current research, mineralogica...

متن کامل

توزیع عناصر کمیاب و خاکی نادر در میان فازهای دگرگونی و کلینوپیروکسن‌های باقیمانده در اپیدوت- آمفیبولیت‌های شمال ارومیه- شمال‌غرب ایران

Rare earth and trace element concentrations of mineral assemblages including amphibole, plagioclase, epidote group minerals (zoisite and clinozoisite) and relict clinopyroxenes from parental rock of epidote amphibolite from north of Urumia were obtained in situ by LA-ICP-MS analysis. The obtained data were used to study distribution of trace elements among metamorphic phases and relict clinopyr...

متن کامل

Geochemistry of Rare Earth Element in garnet group minerals in some regional metamorphic complexes - Central Iran Micro-Continent (CIMC)

This study focuses on the amount and concentration of trace elements and REEs pattern in garnet crystals which experienced regional metamorphism in the central Iran micro-continent, including the areas of Deh-Salm, Zaman Abad, Mishdowan, and Tanbour. Generally, garnet crystals are isolated from mica schists of greenschist to amphibolite facies. Mineralogical composition of garnets shows almandi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016